博客
关于我
KNN —— 基本介绍与简要实现
阅读量:347 次
发布时间:2019-03-04

本文共 522 字,大约阅读时间需要 1 分钟。

KNN算法

介绍

KNN(K-Nearest Neighbors)是一种经典的分类算法,其基本思想是通过找到某个样本的K个最近邻来预测其类别。这种方法在数据局部进行分类,属于局部方法。

K值的选择至关重要,通常K取奇数以避免平票。例如,在二分类问题中,K常设为1、3、5等。算法步骤包括计算测试点与所有训练点的距离、排序后选择前K个最近点,并根据这些点的类别分布归类测试点。

实现步骤

  • 计算距离:对于每个测试点,计算其到所有训练点的欧氏距离。
  • 排序:对所有距离按从小到大排序,找出最近的K个点。
  • 统计类别:统计前K个最近点中各类别的数量,选择数量最多的类别归类测试点。
  • 案例分析

    以鸢尾花数据集为例,数据包含四个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。类别分为山鸢尾花(0)、变色鸢尾花(1)、维吉尼亚鸢尾花(2)。此处采用K=5进行分类。

    通过上述算法,实现分类任务。代码使用sklearn中的鸢尾花数据集,切分训练集和测试集,应用KNN算法进行预测。最终结果表现在分类报告中,展示准确率、召回率及F1值等评估指标。

    该方法具有高效性和简单性,但适用场景主要限于小规模数据集。对于大规模数据集,可能需要降维或使用其他优化技术以提高性能。

    转载地址:http://hehe.baihongyu.com/

    你可能感兴趣的文章
    opencv Mat push_back
    查看>>
    opencv putText中文乱码
    查看>>
    OpenCV Python围绕特定点将图像旋转X度
    查看>>
    opencv resize
    查看>>
    Opencv Sift和Surf特征实现图像无缝拼接生成全景图像
    查看>>
    opencv SVM分类Demo
    查看>>
    OpenCV VideoCapture.get()参数详解
    查看>>
    opencv videocapture读取视频cap.isOpened 输出总是false
    查看>>
    opencv waitKey() 函数理解及应用
    查看>>
    OpenCV 中的图像转换
    查看>>
    OpenCV 人脸识别 C++实例代码
    查看>>
    OpenCV 在 Linux 上的 python 与 anaconda 无法正常工作.收到未实现 cv2.imshow() 的错误
    查看>>
    Opencv 完美配置攻略 2014 (Win8.1 + Opencv 2.4.8 + VS 2013)上
    查看>>
    opencv 模板匹配, 已解决模板过大程序不工作的bug
    查看>>
    OpenCV 错误:(-215)size.width>0 &&函数imshow中的size.height>0
    查看>>
    opencv&Python——多种边缘检测
    查看>>
    opencv&python——高通滤波器和低通滤波器
    查看>>